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A method for a Galois Field multiply includes executing first
and second instructions. The first instruction includes receiv-
ing a first input, such as a first variable, receiving a second
input, such as a second variable, performing a polynomial
multiplication over GF(2™), using the first and second inputs,
and producing a product. The second instruction includes
receiving a third input, which may be the product from the
first instruction, receiving a fourth input, which is a predeter-
mined generator polynomial to operate upon the product,
receiving a fifth input, which is a length of the predetermined
generator polynomial, to limit operation of the predetermined
generator polynomial upon the product, and computing, via
the predetermined generator polynomial limited by the
length, a modulus of the product with respect to a divisor. A
hardware block is also described.
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IMPLEMENTATION OF ARBITRARY
GALOIS FIELD ARITHMETIC ON A
PROGRAMMABLE PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is the U.S. National Phase of Inter-
national Application PCT/US2009/043179, filed May 7,
2009, which claims priority benefit under 35 U.S.C. §119(e)
to U.S. Provisional Patent Application Ser. No. 61/052,482,
filed on May 12, 2008, the contents of which are incorporated
herein by reference.

FIELD OF THE INVENTION

The invention concerns implementation of Galois Field
Arithmetic in GF(2™), where both the length, m, and the
generator polynomial, p(x), may be specified by the user. To
accomplish this, two instructions, (1) a gfmul instruction and
(2) a gfnorm instruction, are introduced that, together, imple-
ment a Galois Field Multiply.

DESCRIPTION OF THE RELATED ART

Galois Field Arithmetic finds uses in many applications,
including coding theory and encryption.

As may be appreciated by those skilled in the art, examples
within the domain of coding theory include the well-known
Reed-Solomon (“RS”) error-correcting codes.

A RS error-correcting code typically is denoted as RS(n k).

In one example, the RS code may operate with m-bit sym-
bols. In such a code, the encoder groups k*m bits into a
data-word ofk data-symbols, where each symbol has m bits.
The encoder then computes n-k additional parity symbols
(also of m bits each) to form a code word of n*m bits, which
is referred to herein as a “n symbol” code word. The maxi-
mum size of n is 2”'-1.

In general, a RS code is able to correct any (n-k)/2 erro-
neous symbols.

A popular example of a RS code is the RS(255,223). The
RS(255,223) uses 8 bit symbols, adds 32 parity bytes to a data
block of 223 bytes, and corrects any erroneous 16 bytes in the
resulting 255 byte code word. Since this particular RS code
should be known to those skilled in the art, further elaboration
is not provided herein.

The parity symbols are computed using the following
three-part approach, which is discussed in the paragraphs that
follow.

First, the k m-bit symbols are taken to be the coefficients of
a degree k-1 polynomial over the Galois Field GF(2™). For
purposes herein, the function is called “d(x)”. Thus, if the
symbols to be transmitted are d, . . . d;_,, the polynomial is
may written according to equation (1):

d(xy=do+d\x+ . . . +d,_ ! eq (1)

Second, for a given RS code, a generator polynomial is
selected. The generator polynomial may be represented by
“g(x)”, with a degree 2m~1. The generator polynomial may,
therefore, be represented by equation (2):

eq (2)

In equation (2), “a” is a special value in GF(2™), called a
“primitive element”, as should be recognized by those of
ordinary skill in the art.

Third, the parity symbols are computed by solving a parity
equation, which may be expressed as in equation (3):

gx)=(x+a)(x+a?) . .. (x+a" )
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pF)=d(x)*x' mod g(x) eq (3)

In equation (3), all operations are executed over the field
GF(2™).

As may be appreciated from the foregoing, addition and
multiplication in Galois Fields of various sizes form the basis
of Reed-Solomon encoding. Addition and multiplication also
form the basis of the various RS decoding algorithms, such as
the Berlekamp algorithm (E. Berlecamp, “Bounded dis-
tance+1 soft decision Reed-Solomon decoding”, IEEE Trans.
Inform. Theory., Vol. 42, pp. 704-720, May, 1996) and the
Formey algorithm (G. D. Formey, “Generalized Minimum
Distance Decoding”, IEEE Trans. Inform Theory, Vol. IT-12,
pp. 125-131, April, 1996).

Since addition and multiplication are fundamental to
implementations of Galois Field equations, rapidity in
executing Galois Field addition and multiplication assists
with improving processing time and increasing processing
efficiency.

As may be appreciated by those skilled in the art, Galois
Field addition is simple, typically being an XOR of two
arguments. Galois Field multiplication, however, is more
complex, requiring either specialized hardware or an
approach requiring a lookup table.

As the foregoing emphasizes, increases in processing time
and efficiency are desirable “commodities” in the area of
Galois Field processing.

SUMMARY OF THE INVENTION

The invention, therefore, presents certain approaches to
increase processing efficiency and decrease processing time.

The invention presents approaches that resolve at least
some of the deficiencies noted with respect to the prior art.

Specifically, it is one aspect of the invention to provide a
method for a Galois Field multiply that executes a first
instruction followed by a second instruction. The first instruc-
tion may be a gmful instruction and the second instruction
may be a gfnorm instruction.

Another aspect of the invention provides for three opera-
tions to be included in the first instruction and four operations
to be provided in the second instruction. The three operations
that are included in the first instruction include receiving a
first input that includes a first variable, receiving a second
instruction that includes a second variable, and performing a
polynomial multiplication over GF(2™), using the first and
second inputs. The four operations that are provided for the
second instruction include receiving a third input, which is
the product from the first instruction, receiving a fourth input,
which is a predetermined generator polynomial to operate
upon the product, receiving a fifth input, which is a length of
the predetermined generator polynomial, to limit operation of
the predetermined generator polynomial upon the product,
and computing, via the predetermined generator polynomial
limited by the length, a modulus of the product with respect to
a divisor.

Still another aspect of the invention provides a hardware
block that includes a gmful logic and a gfnorm logic. The
gmful logic includes a first input and a second input. The
gmful logic also includes a polynomial multiplier logic that is
configured to multiply, over GF(2™), the first and second
inputs and produce a product. The gfnorm logic includes a
third input, which receives the product from the gmful logic,
a fourth input to receive a predetermined generator polyno-
mial that operates upon the product from the polynomial
multiplier logic, a fifth input to receive a length of the prede-
termined generator polynomial that limits operation of the
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predetermined generator polynomial upon the product, and a
computational logic to compute a modulus of the product
with respect to a divisor via the predetermined generator
polynomial limited by the length.

As should be appreciated by those skilled in the art, other
aspects of the invention will be made apparent from the dis-
cussion and from the drawings that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings appended hereto illustrate one or more
embodiments of the invention, in which:

FIG. 1 is a flow diagram illustrating a first portion of one
method contemplated by the invention;

FIG. 2 is a flow diagram illustrating a second portion of the
method illustrated in FIG. 1;

FIG. 3 is a block diagram providing one contemplated
logic for the gmful instruction;

FIG. 4 is a block diagram providing one contemplated
logic for the gfnorm instruction; and

FIG. 5 is a block diagram providing one contemplated
arrangement for a compute stage logic.

DESCRIPTION OF PREFERRED
EMBODIMENT(S) OF THE INVENTION

The invention will now be described in connection with
one or more embodiment(s). The invention, however, is not
intended to be limited to the embodiments described herein.
To the contrary, as the following discussion will make appar-
ent, there are numerous variations and equivalents to the
embodiments discussed that may be employed without
departing from the scope and spirit of the invention. These
variations and embodiments are intended to fall within the
scope of the invention.

With respect to the invention, for purposes of executing a
Galois Field multiply (also referred to as a multiplication,
herein), four pieces of information typically are required: (1)
a value of the variable referred to as “multiplicand 17, (2) a
value of the variable referred to as “multiplicand 27, (3) a
generator polynomial, p(x), and (4) a length of the polyno-
mial, m.

Of these four variables, the first three are generally avail-
able from a register, typically a source register. The length of
the polynomial, m, which is the fourth variable, either may be
encoded as part of the instruction or may be read from a
register, typically an immediate register.

As should be apparent to those skilled in the art, most
instruction set architectures are not capable of providing three
source register instructions plus one immediate register
instruction. In addition, as also should be appreciated by
those skilled in the art, most instruction set architectures are
not capable of providing four source register instructions.
Instead, prior art instruction set architectures resort to dedi-
cated special purpose registers to provide at least some of the
information required.

The invention relies upon a simple approach to the complex
set of variables that are manipulated for Galois Field algo-
rithms. Specifically, for the invention, the Galois Field mul-
tiply is split into two separate instructions: (1) a gfmul
instruction, and (2) a gfnorm instruction. The gfmul instruc-
tions performs the m-bit polynomial multiplication over
GF(2), yielding a 2m~-1 bit product. In a generic alternative
variation, the gfmul instruction performs the m-bit polyno-
mial multiplication over GF(2™). Accordingly, in the GF(2)
example, m=1. The gfhorm instruction computes the modu-
Ius of a 2m~1 bit number with respect to a m+1 bit divisor.
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With this split, the gfmul instruction has 2 inputs: (1) multi-
plicand 1, and (2) multiplicand 2. As should be apparent, the
gfhorm instruction has 3 inputs: (1) the product, (2) the poly-
nomial, p(x), and (3) the length, m.

As should be immediately apparent, this split reduces the
port/encoding requirements for the instruction set. However,
it also tends to force the processor to issue two instructions for
every GF multiply.

From a theoretical perspective, forcing the processor to
issue two instructions for every GF multiply would not appear
to provide any appreciable advantage over the prior art. How-
ever, in practice, the gfnorm instruction is issued much less
frequently than the gfmul instruction. As a result, this split
does offer advantages over the prior art. Specifically, it has
been observed that GF multiplies are usually performed as
part ofalarger reduction. The following equation summarizes
this observation:

=2, ®bD ... Pa,®b,

This equation may be rewritten according to the following:

z=(agxbg) % PD . .. Dla,xb,) % P=(apxbyD . . .
Da,xb,) % P

Thus, it is possible to XOR the 2m~-1 bit product of n gfmul
instructions together and to execute a final modulus at the end.
By executing the instructions according to this design, the
modulus does not need to be executed at each step. This
provides, in certain cases, a significant processing savings
both in terms of processing time and power consumption.
Sharing Logic

As should be appreciated by those skilled in the art, in
Galois Field Algorithms (as with other computations), a
remainder may need to be calculated. The present invention
takes into account certain patterns in remainder calculation
that permit simplification of this calculation. The invention
also capitalizes on other mathematical patterns, as detailed
below.

To compute a remainder (also referred to as a remainder
polynomial), a series of subtractions (i.e., XORs) of the divi-
sor is performed, based on whether or not the leading bit of the
current remainder is 1. To compute the product, a series of
additions (i.e., XORs) of one of the multiplicands is per-
formed, based on whether or not the corresponding bit of the
other multiplicand is 1.

As an example, consider the multiplication of 101100 and
011011. If the multiplication is written out in long form, the
multiplication appears as follows:

101100

011011
000000

101100
101100
000000
101100

101100

01111010100

[ Y

It is noted that this multiplication has been written in an order
opposite to the normal normal order. In the example, the
multiplication has been written out starting from the left, not
the right.

With this example in mind, an example of a computation of
the modulus of 11001101110 by 1001001 is provided. Here,
the division calculation is written as:
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11001101110
1001001
1001001
0000000
1001001
0000000
100100

1011111110
010110110
10110110
0100100

These two calculations are presented in this fashion to
point out the similarities in the matrices. As is immediately
apparent, the numbers to the right are the partial sums.

With reference to the two computations detailed above, one
difference lies in the fact that the division XORs produce a
m+1 bit number, while the multiply XORs produce a m bit
number. It is, however, possible to compensate for this differ-
ence. A generator polynomial has the property that the lead-
ing bit is always a “1”. It is possible, therefore, to exploit this
property of the generator polynomial. For example, it is con-
templated to use m-bit XORs by the following algorithm: (1)
if the leading bit of the partial sum is 1, then XOR the remain-
ing bits with the lowest m bits of the remainder polynomial,
and (2) zero the leading bit.

The major difference between the two computations is the
selection of whether to execute the XOR or not. In the case of
the multiply, the i” leftmost bit of the multiplicand is used. In
the case of the remainder, the leftmost bit of the current
remainder is used.

Left Adjust/Zero Fill

The invention contemplates a simplification of the compu-
tation. For purposes of the simplification, it is assumed that all
numbers involved, including the multiplicands, products, and
remainder polynomials, are stored in the most significant bits
(“MSBs”) of the registers. In addition, it is assumed that all
unused bits in the register are zeroed. As a result, if the
number 101101 is stored in a 16 bit register, the register
contents become 1011 0100 0000 000. While this is not
strictly necessary, it simplifies the logic required to compute
the remainder, because it does not become necessary to
execute any additional instructions (or perform any additional
work) to identify the leading digit.

Since all numbers are zero padded, m is not required as an
input to the gfmul operation. The gmful operation performs
the maximum number of XOR steps, and since any bits
between the true length of the polynomial and the maximum
polynomial length supported by the hardware will be zero, the
additional XOR steps will contribute 0 to the result.

For a gfnorm operation, we have to perform m-1 XOR
steps to reduce a 2m-1 bit polynomial to an m bit polynomial.
Psuedo-Code

Code Segment #1, below, presents one embodiment of the
pseudo-code contemplated to implement the unified gfnorm/
gtmul instructions for maximum m of 8. It is assumed that the
inputs to the gfimul instruction are a and b, with a result t, and
that the inputs to the gfnorm instruction are a, b, and N, with
a result t. Indicies are left-first (i.e., O is the MSB of the
register).

Code Segment #1

gfmul gfnorm
a=a<<7;
t=0; t=b;
for(i=0;i<8;i++) { for(i=0;i<8;i++) {
if(b[i] == 1) { if(t[0] == 1 && i<=N) {

t=(t<<1) a; t=(t<<1) a;
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-continued

Code Segment #1

else {
t=t<<l;
¥ ¥
¥ ¥

else {
t=t<<l;

It should be evident that the underlying logic is the same,
and only the controls are different.
Extension

The basic operation discussed above may be modified in
several different ways. For example, operations that may be
added to the basic example include: (1) a gfmac instruction,
(2) avector, and (3) a vector-reduction. A gfimac instruction is
an operation with three inputs. The gfmac instruction com-
putes the product of two of its inputs and XORs that product
with the third input, thereby producing a result. A vector is a
vector/SIMD processor. For a vector, it is straight-forward to
add vector/SIMD equivalents of the gfmul/gfnorm/gfmac
instructions and to perform multiples of these instructions in
parallel. A vector-reduction is executed in a vector/SIMD
processor with a reduction unit. Here, it is contemplated to
add an operation that performs multiple gfmul operations in
parallel and the XORs all the results together before writing
the results to a scalar target, such as an accumulator.

The invention will now be described in connection with
embodiments of a method and embodiments of a hardware
block, both of which are encompassed hereby. In connection
with this discussion, reference is made to FIGS. 1-5.

One embodiment of the method of the invention contem-
plates a Galois Field multiply. The method, which is provided
with reference numeral 10, is illustrated in FIGS. 1 and 2.

The method 10 begins at 12. Then, at 14, the method
executes a first instruction. The execution of the first instruc-
tion 14 includes three operations, the first of which is receiv-
ing a first input at 16. The first input includes a first variable.
Execution of the first instruction 14 also includes receiving a
second input at 18. The second input may be a second vari-
able. The execution of the first instruction additionally
includes, at 20, performing a polynomial multiplication over
GF(2™), using the first and second inputs. As a result of the
execution of the polynomial at 20, the execution of the first
instruction 14 produces a product. The product may become
one of the inputs (i.e., the third input) for the execution of the
second instruction at 24, which is discussed in connection
with FIG. 2. FIG. 1 includes a transition block 22, which
indicates that the method 10 continues in FIG. 2.

FIG. 2 details the remainder of the method 10. The method
10 continues to the execution of the second instruction at 24.
As detailed in FIG. 2, there are four operations that make up
the second instruction. The first of the four operations is at 26,
where the method 10 receives a third input, which may be the
product from the first instruction. At 28, the method 10
receives a fourth input, which is a predetermined generator
polynomial to operate upon the product. At 30, the method 10
receives a fifth input, which is a length of the predetermined
generator polynomial, to limit operation of the predetermined
generator polynomial upon the product. At 32, the method 10
computes, via the predetermined generator polynomial lim-
ited by the length, a modulus of the product with respect to a
divisor. The method 10 ends at 34.

In one contemplated variation on the method 10, the first
instruction comprises a gfmul instruction and the second
instruction comprises a gfnorm instruction.
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In another contemplated variation on the method 10, the
first variable comprises multiplicand 1 and the second vari-
able comprises multiplicand 2.

It is also contemplated that the method 10 may be executed
such that the length is a integer, m, and the product is 2m-1
bits in length. Consistent with this approach, the polynomial
multiplication may be a m-bit multiplication. As such, the
divisor may be m+1 bits in length. In one alternative embodi-
ment, it is contemplated that the length is an integer, m-1.

As noted above, it is contemplated that the method 10 will
execute the first instruction at 14 and the second instruction at
24 such that the second instruction is executed at a frequency
less than that of the first instruction. This occurs when the
result of multiple executions of step 14 are XOR-ed together
before being sent, as a third input, to step 24.

In another contemplated embodiment of the invention, the
method 10 may include an operation where a summation is
made of the products of a predetermined number, n, of the first
instructions. In this contemplated embodiment, a final modu-
lus may be executed after summing the products of the pre-
determined number of the first instructions. As should be
apparent, n is an integer in this embodiment.

As indicated above, it is contemplated that the method 10
may be executed such that values for the first and second
inputs are stored in most significant bits in corresponding
registers.

In addition, it is contemplated that the second instruction
24 may be modified by assessing if a leading bit of a current
remainder equals 1. If the leading bit of the current remainder
equals 1, the second instruction 24 then executes at least one
subtraction of the divisor. As a result, the second instruction
24 may produce a remainder. Values for the remainder may be
stored in the most significant bits in a corresponding register.

Alternatively, the method 10 may include a comparison
between the first input and the second input. After the com-
parison, the method 10 may assess if a predetermined corre-
sponding bit in one of the first or second inputs equals 1. Ifthe
predetermined corresponding bit in one of the first or second
inputs equals 1, the method 10 may then execute at least one
addition on at least one of the first or second inputs. As a
result, the method 10 will produce a resulting product. Values
for the resulting product may be stored in most significant bits
in a corresponding register.

In one contemplated variation, all unused bits in the corre-
sponding register may be zeroed. In another contemplated
variation, at least one of the first variable, the second variable,
the length, the product, and the divisor may contain data that
is left-shifted.

It is also contemplate to modify the method 10 such that a
leading bit of the predetermined generator polynomial is
excluded from the fourth input, thereby creating a fourth
variable with a length of m bits.

Referring to FIG. 3 and FIG. 4, the invention also encom-
passes hardware blocks 36 and 38, respectively. The hardware
block 36 illustrates one contemplated embodiment for the
gtimul logic. The hardware block 38 provides one contem-
plated embodiment for the gfnorm logic. These two embodi-
ments are intended to be merely illustrative of two of the
many hardware blocks 36, 38 contemplated to fall within the
scope of this disclosure.

As noted in FIG. 3, the hardware block 36 includes N
compute stage blocks, 48, 50, and 52. Each of these compute
stage blocks 48, 50, 52 reads an intermediate value produced
by a previous compute stage block and writes the intermedi-
ate value for consumption by the next compute stage block.
The values consumed by the compute stage blocks are indi-
cated by 46, 54, 56 and 58 in the figure. Value 58 is the output
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of the hardware block 36. Each of the compute stage blocks
48, 50, 52 reads an addend value 40 and length value 44. The
hardware block 36 is intended to be a processor, such as a
semiconductor component, that is configured to execute spe-
cific instructions with or without additional software instruc-
tions. As should be appreciated by those skilled in the art, this
may encompass a wide variety of devices.

With continued reference to FIG. 3, this figure indicates
how the block is connected to implement the gmful logic. It
includes a first input 40 and a second input 42. The first input
40 is a component or a connection that receives signals
including a first variable, which may be a multiplicand) vari-
able. The second input 42 may be a component or a connec-
tion that receives a second variable, such as a multiplicand2
variable.

Asillustrated in FIG. 3, an addend value 44 is set to the first
input value 40 prepended by N zeroes. The addend value 44 is
provided to the first compute stage block 48, the second
compute stage block 50, and the third compute stage block 52.
In addition, an intermediate value 46 is provided to the first
compute stage block 48. The intermediate value 46 is set to 0
in this illustration. It is noted that the intermediate value 46
may be set to a value other than 0, as required by the hardware
block 36.

As is apparent from FIG. 3, each compute stage 48, 50, 52
reads at least one bit of the second input 38. In other words,
the second input 38 provides data to each of the compute
stages 48, 50, 52. A length value 44 is set to N, which is
equivalent to the number of compute stages. As noted in FIG.
3, the computer stages are numbered from O ... N-1. The i-th
stage will read the i-th bit starting at the most-significant bit.
Thus, compute stage#0, 48, reads MSB bit 60, compute
stage#1, 50, reads the next-to-MSB-bit, 62, and the last stage,
52, reads the Nth most significant bit, 64.

Reference is now made to FIG. 4, which diagrams the
hardware block 38 for the gfhorm logic. As is immediately
apparent, there are several similarities between the hardware
block 38 and the hardware block 36 illustrated in FIG. 3.

InFIG. 4, the compute stages are numbered 66, 68, 70. The
gthorm logic block 38 includes a third input 72, which holds
the dividend (generally the product of a gfmul), a fourth input
74, which is a divisor (generally the generator polynomial),
and fifth input, 76, which is the number of steps, generally two
less than the length, of the generator polynomial. An addend
value 78 is copied from the fourth input 74. An initial inter-
mediate value 80 is copied from the third input. A length value
82 is copied from the fifth input 76. As also shown, an inter-
mediate value 84 is input into compute stage #1, 68. Similarly,
an intermediate value 86 is inputted into compute stage #N-1,
70. The output is designated with the reference number 88.

FIG. 5 provides a detail of one contemplated embodiment
for the compute stage blocks 48, 50, 52, 66, 68, 70. As shown
in FIGS. 3 and 4, each compute stage block 48, 50,52, 66, 68,
70 reads an addend 90, an intermediate value 92, and a length
94. Additionally, when configured for gfmul, the compute
stage block reads an add-bit 96. The intermediate value is
left-shifted by 1 in hardware block 98, resulting in value
shifted value 100. This value is then fed to XOR block 102
which XORs the shifted value 102 with the addend 90. A
leading sign logic unit 104 generates a first select value 106.
When configured for a gfnorm instruction, the first select
value 106 is the MSB 107 of the intermediate input 92. When
configured for a gfimul instruction, the first select value 106 is
the add-bit 96. If first select value 106 is 1, the first multi-
plexer 108 selects the XOR-result 110 of the XOR. Other-
wise, the first multiplexer 108 selects the shiftedvalue 100,
generating a first mux result 112. A length compare logic 114
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generates a second select value 116. The second select value
116 is 1 for the i-th compute stage if i is less than the provided
length 94. The second select mux 118 selects the first mux
result 112 if the second select value 116 is 1, otherwise it
selects the intermediate value 92, producing the output inter-
mediate value 120. Other variations also are contemplated, as
should be appreciated by those skilled in the art.

As should be apparent from the foregoing, it is contem-
plated that the hardware blocks described in FIGS. 3,4 and 5
may be replicated for parallel processing. If so, these replicas
are contemplated to be operate in parallel with one another.
With respect to this embodiment, any one of the hardware
blocks may include a summation logic to sum results from
individual ones of the parallel gfmul logics to produce a
summed result. A scalar register may be used to store the
summed result. The scalar register may be an accumulator.
The parallel processing may be performed via a SIMD pro-
Cessor.

As noted above, the invention is not intended to be limited
solely to the specific embodiments discussed above. To the
contrary, those skilled in the art should readily recognize that
there are numerous equivalents and variations to the embodi-
ments that may be employed without departing from the
scope of the invention. Those variations and equivalents are
intended to fall within the scope of the invention.

What is claimed is:

1. A processor configured to perform a galois field multi-
ply, comprising:

a first circuit configured to execute a first instruction com-

prising:

a first input configured to receive a plurality of coeffi-
cients of a polynomial that is a member of a galois
field,

a second input configured to receive a plurality of coef-
ficients of a polynomial that is a member of the galois
field, and

a polynomial multiplier circuit configured to output a
product by multiplying the first and second inputs;

a second circuit configured to execute a second instruction

comprising:

a third input configured to receive a plurality of coeffi-
cients of a polynomial,

a fourth input configured to receive a plurality of coef-
ficients representing a predetermined generator poly-
nomial of the galois field,

a fifth input configured to receive a length of the prede-
termined generator polynomial, and

a modulo computation circuit configured to output a
modulus of the third input with respect to a divisor,
wherein the modulus is generated by performing
number of operations on the third input using the
fourth input, wherein the number of operations is
limited by the fifth input; and

a stage computation circuit configured to be used by both

the polynomial multiplier circuit and the modulo com-
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putation circuit, comprising a plurality of stages, the

stage computation circuit further comprising:

a sixth input configured to receive an intermediate value,
and

a seventh input configured to receive an addend value,

wherein an exclusive OR operation is performed on the
intermediate value and the addend value to produce an
exclusive OR result,

wherein the exclusive OR result is left-shifted to pro-
duce an output intermediate value, and

wherein the output intermediate value is provided as an
input to a next stage.

2. The processor of claim 1, further comprising:

a first select circuit configured to set the intermediate input
value of a first stage to zero if the processor is executing
the first instruction, or to the third input if executing the
second instruction.

3. The processor of claim 2, further comprising:

a multiply bit circuit in each stage configured to determine
if the bit corresponding to a number indicating the cur-
rent stage of the second input, counted from the leading
bit, is one

wherein if the processor is executing the first instruction,

the stage computation circuit is configured to perform an
exclusive OR operation on the addend and intermediate
value.

. The processor of claim 1, further comprising:

second select circuit configured to set the value of the
addend to the first input prepended with zeros corre-
sponding to a number indicating the current stage if the
processor is executing the first instruction, or to the
fourth input if the processor is executing the second
instruction.

5. The processor of claim 1, further comprising:

aleading bit circuit in each stage configured to determine if
a leading bit of a current intermediate input of the stage
equals one, and

if the stage number is less than the fifth input, and if the
processor is executing the second instruction, the stage
computation circuit is configured to perform an exclu-
sive OR operation on the addend and the intermediate
value.

6. The processor of claim 1, further comprising:

a shift circuit in each stage configured to determine if the
stage number is less than the fifth input,

wherein if the processor is executing the second instruc-
tion, the stage computation circuit is configured to shift
the exclusive OR result.

7. The processor of claim 1, further comprising:

a multiply shift circuit in each stage configured to shift the
exclusive OR result when the processor is executing the
first instruction.
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